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We study the diffraction, to second order, of plane monochromatic incident gravity 
waves by a vertically axisymmetric body. The second-order double-frequency 
diffraction potential is obtained explicitly. A sequence of one-dimensional integral 
equations along the generator of the body involving free-surface ring sources of 
general order are formulated and solved for the circumferential components of the 
second-order potential. The solution is expedited by analytic integration in the 
entire local-wave-free outer field of a requisite free-surface integral. The method is 
validated by extensive convergence tests and comparisons to semi-analytic results 
for the second-order forces and moments on a uniform vertical circular cylinder. 
Complete second-order forces, moments, surface pressures and run-up on the vertical 
cylinder as well as a truncated vertical cone are presented. A summary of the 
important findings is given in $5. 

1. Introduction 
When nonlinear effects are included in the diffraction of waves by a body, there 

are, at second order, interactions at  the sums and differences of the component 
frequencies of the incident waves. Although the magnitudes of these nonlinear effects 
are in general only second order, they act at frequencies away from that of the 
ambient wave energy, and may therefore be of primary concern especially when such 
excitations are near the natural periods of the body motions or where restoring or 
damping forces are small. I n  certain other cases, such as for non-wall-sided 
geometries (see $4), second-order effects may also be an appreciable part of the total 
excitation and are therefore important corrections to the linearized results. 

Despite its importance, theoretical developments of the second-order diffraction 
problem have until recently (e.g. Ogilvie 1983) been scant. Even for the simple 
geometry of the uniform vertical circular cylinder, the results were controversial 
(Issacson 1977; Chakrabarti 1978; Molin 1979; Wehausen 1980; Hunt & Baddour 
1981; Chen & Hudspeth 1982; Rahman 1983). The principal difficulties are the 
correct treatment of the second-order free-surface boundary conditions and a proper 
specification of the radiation condition for the second-order diffracted waves. 

A seminal work was that of Molin (1979), who by decomposing the second-order 
potential into free and forced terms satisfying respectively homogeneous and 
inhomogeneous free-surface conditions, obtained consistent radiation conditions for 
the separate components. These results have also been confirmed recently by Wang 
(1987) who studied the long-time limit of the initial-value problem. To obtain 
integrated second-order quantities such as forces, Molin avoided the explicit solution 
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of the double-frequency second-order potential by introducing a fictitious assisting 
radiation potential a t  that frequency. Applying Green’s identity, an expression for 
the second-order force can be obtained in terms of the assisting potential and 
functions of first-order quantities. The method requires the vanishing of a far-field 
integral - a weak radiation condition guaranteed by the asymptotic behaviours of 
the second-order potentials. The same approach was suggested independently by 
Lighthill (1979), and was in fact used by Faltinsen & Loken (1978) for the two- 
dimensional problem. Molin’s solution has since been extended, for example, by 
Molin & Marion (1986), who obtained some results for second-order motions; by 
Loken (1986), who also attempted a solution of the second-order potential; and by 
Eatock Taylor & Hung (1987), who developed a method for the evaluation of the 
free-surface integral based on leading asymptotics. 

In  this paper, we consider the direct solution of the second-order diffraction 
problem. A Green’s theorem integral equation is obtained for the second-order 
diffraction potential involving the (double-frequency) wave-source Green function. 
This equation is similar to that for the linear problem with the exception of a forcing 
term involving products of first-order potentials which is a slowly converging 
integral over the entire free surface. An effective evaluation of this integral is 
essential to the solution of the problem and a detailed asymptotic method which 
performs the integration analytically in the entire local-wave-free outer domain is 
developed. Since the second-order potential is obtained explicitly, complete second- 
order local quantities such as pressures, velocities and surface elevations are readily 
available in addition to integrated forces and moments. 

For simplicity, we consider bodies that possess vertical axes of symmetry. 
Expressing the potentials in terms of Fourier series in the circumferential coordinate, 
we obtain after integration a sequence of one-dimensional integral equations along 
the generator of the body for each Fourier component with free-surface ring-source 
kernels of the corresponding order. For linear problems involving axisymmetric 
bodies, the ring-source distribution method was used by Black (1975), and later by 
Fenton (1978) and Hulme (1983), who gave particular attention to the treatment of 
singularities and the convergence of representations of the ring source and its 
derivatives. Their numerical examples are, however, limited to the first two Fourier 
modes. For the diffraction problem, we present here an analysis and numerical 
method for the arbitrary-order ring-source potential and its gradient. 

To illustrate the present method, we present computational results for a uniform 
vertical circular cylinder and for a truncated conical body, both in finite depth. The 
validity and accuracy of the method is demonstrated by extensive results for 
convergence with respect to body discretizations, number of circumferential modes, 
and free-surface integral evaluation, as well as comparisons to semianalytic solutions 
for the second-order forces and moments for the vertical cylinder derived in 
Appendix B. Detailed results for the linear and second-order mean and doublc- 
frequency forces, moments, pressure distributions and run-up on the bodies are 
presented and discussed in 5 4. Important features of second-order diffraction effects 
are summarized in $5.  

We have studied the diffraction by a single monochromatic wave. The solution of 
sum- and difference-frequency second-order diffraction in the presence of bichromatic 
incident waves as well as the radiation problem are considered in a forthcoming 
paper, Part 2. Many of the techniques developed here can be extended to general 
three-dimensional bodies, and an outline is presented in the conclusion section. 
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2. Formulation of the second-order problem 
2.1. The boundary-value problem 

We consider the linear and second-order diffraction of a plane monochromatic 
incident wave, frequency o, linear amplitude A, by a fixed three-dimensional body 
in constant water depth, h. Cartesian coordinates with the (x,y)-plane in the 
quiescent free surface and z positive upward are chosen. Assuming potential flow and 
weakly nonlinear waves, we express the total velocity potential @ as a perturbation 
series in the wave-slope parameter, E = kA 4 1 : 

@ = € @ ( 1 ) + € 2 @ ( 2 ) +  ..., (2.1) 
where k is the incident wavenumber given by the dispersion relationship o2 = gk tanh 
(kh) ,  g being the gravitational acceleration. For monochromatic incident waves, we 
separate the time dependencies explicitly and write 

@(l) (x, y, z ,  t )  = Re {$(l)  (2, y ,  z )  e@”}, 

@(2) (x, y, z ,  t )  = Re {$(2) (x, y, z )  ePeiwt} + @2) (5,  y, z).J 

Note that the contribution of the steady part of the second-order potential in (2 .2 )  
to the pressure (hence forces) or free-surface elevation is a t  most O(s3) .  At each order, 
the boundary-value problem is linear and we decompose @ into incident (dI) and 
diffracted ($D) potentials : $ c i )  = $it) + $g), i = 1,2.  The incidence potentials are given 

‘1 (2 .2)  

from Stokes’ waves: 
- igA cosh k ( z  + h)  eikz 

“)=? coshkh , 

- 3iwA2 cosh 2k(z + h )  ei2kz $p = 
8 sinh4 kh 3 

( 2 . 3 ~ )  

(2.3b) 

for a wave incident from x N - co . The boundary-value problems governing the first- 
and second-order diffraction potentials are respectively 

( 2 . 4 ~ )  V2&) = 0 in the fluid ( z  < 0) ; 

onx = O ( & ) ;  (2.4b) 

- = o  on z = - h ;  ( 2 . 4 ~ )  
a$p 

aZ 

- - - -- ”“) on the body (&) ; a $ p  
an an 

(2.4d)  

(2.4e) 

and VZ$(D2) = 0 in the fluid ( z  < 0);  ( 2 . 5 ~ )  

( -4w2+y$)$g)  = q on z = 0 (4); (2.5b) 

g=o on z = - h ;  ( 2 . 5 ~ )  
az 

(2 .5d)  
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plus a suitable radiation condition a t  infinity. In  the above p = (x2 +y2)i is the radial 
distance from the origin, and a/& the normal derivative into the body. The first- 
order problem (2.4) is classical, and a variety of numerical methods are now available 
(e.g. Mei 1978). 

The second-order problem is complicated by the inhomogeneous forcing term in 
the free-surface boundary condition (2 .5b) ,  which is given in terms of quadratic 
products of the first-order potential : 

where the contribution from quadratic products of the incident potential q5p) itself, 
qII, is subtracted out owing to the free-surface condition satisfied by (2 .3b ) .  The 
specific radiation condition for q5g) depends on the far-field behaviour of q. I n  general, 
if the free-surface forcing is absolutely integrable, the validity of a Sommerfeld-like 
radiation condition (2.4e) follows directly from Cauchy-Poisson theory (Stoker 
1957). In  the present case, q contains quadratic products of &) itself (qDD), as well 
as products of q5g) and a non-diminishing $f) (qID), and a more careful asymptotic 
analysis is necessary, From (2.4e), qDD decays as O(l/p) for p % 1,  while the far-field 
asymptotic of qID is 

qID p-t eikp(l+cos~)  + o(~-:) , 9 1. (2.7) 

Following Molin (1979), we decompose q5g) into a homogeneous (free waves), $H, 

and a particular (locked waves) solution, $p, which satisfy respectively the 
homogeneous and inhomogeneous free-surface conditions (2 .5b ) ,  and jointly the 
inhomogeneous body boundary condition (2.5d).  The boundary-value problem for 
$H is similar to (2.4) and its far-field behaviour is given by 

4 H - p-teikg++(pf), p % 1, (2.8) 

where k2 is the double-frequency wavenumber satisfying 40, = I%, g tanh ( k ,  h) .  From 
(2.7), &, has the asymptotic form 

(2.9) +p - p - t ~ ( ~ ,  z )  eiQ(l+cOso) + o(l /p),  p 9 1,  

where, satisfying the bottom condition, and the field equation to leading order, 
P(B, z )  is given by 

P(B,z) = p ( B ) c o s h { k [ 2 ( 1 + c o ~ B ) ] ~ ( ~ + i L ) } + O ( p - ~ ) .  (2.10) 

Note that this ‘forced’ second-order potential does not attenuate with depth on the 
weather-side ray, B = n, far away from the body. The asymptotic forms (2.8), (2.9) 
for the free and locked wave potentials were first obtained by Molin (1979) and 
subsequently confirmed by the analysis of Wang (1987) who considered the long-time 
limit of the initial-value problem. 

2.2. The boundary-integral equation for the second-order potential 
We introduce the linear wave-source Green function a t  double-frequency ( 2 w ) ,  
G+(x,x’), where x, x’ represent respectively the field and source points. Applying 
Green’s second identity to &) and Gf, and using (2.5) and the boundary conditions 
satisfied by G+, we obtain for X‘E& a second-kind Fredholm integral equation for 
q5g) : 
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where the integral over the far-field vanishes as p +CO : 

(2.12) 

upon using the method of stationary phase in conjunction with the asymptotic 
results (2.8), (2.9). From the point of view of the integral equation (2.11) (not 
considering irregular frequencies associated with h), the ‘weak ’ radiation condition 
(2.12) is sufficient for the uniqueness of the diffraction problem (Finkelstein 1957; 
Peters & Stoker 1957). Interestingly, it can be shown that (2.12) holds for the 
diffraction potentials a t  all orders. 

The integral equation (2.11) is identical in form to that for a linear diffraction 
problem with the exception of the free-surface integral which extends to infinity. 
From the far-field behaviours of q and G+, the integrand diminishes only as p-’ for 
p % 1,  and is highly oscillatory, being the product of three wave-like functions. An 
accurate and efficient evaluation of this slowly converging forcing term is essential 
to the solution of (2.11) and a procedure involving analytic integrations in the local- 
wave-free domain is developed in $2.4. 

For bodies that are vertically axisymmetric about p = 0, the integral equation 
(2.11) over a surface can be reduced to a sequence of boundary-integral problems 
over a line in the (p ,  2)-plane. To accomplish this, we expand $12), $g), q and G+ into 
Fourier-cosine series in the circumferential coordinate 8 : 

where c0 = 1 ,  8, = 2 for n 2 1. Substituting (2.13) into (2.11), performing the 
integration in 8 and equating Fourier coefficients in Of,  we obtain a one-dimensional 
integral equations for each Fourier mode, $gL : 

where the line integrals are along the traces aB, i3F of S, and S, respectively on 
( p , ~ ) .  In the above, the nth mode of the inhomogeneous free-surface forcing term, 
qn,  can be obtained from (2.6): 

(2.15) 
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where v = w2/g,qb$ is the mth Fourier coefficient of qb(l), and all quantities are 
evaluated on z = 0. Noting that G+ (p, 8, z ; p‘, 8’, z‘) = G+ (p, z ; p‘, z’ ; cos (0 - O‘)), the 
nth mode ring source defined in (2.13) can also be expressed as 

G;(p, Z ;  p’, 2’) = J G+ (p, Z ;  p’, z’; cos (0- 8’)) cos n(0- 8’) d(6- 0’). (2.16) 
0 

2.3. Evaluation of the general-order ring-source potential and its derivatives 
The ring-source potential and its normal derivative in (2.14) have been analysed by 
a number of investigators (Fenton 1978; Hulme 1983; Fernandes 1983) although 
numerical results have usually been restricted to the zeroth and first mode only. In  
order to solve for the diffraction potential itself, we develop here a computational 
algorithm for the general-order problem. 

The wave-source Green function G(x; x’) can be expressed as a sum of its Rankine 
source and image, and a regular part : 

1 1  
r r  

G = -+,+ w, (2.17) 

where r2 = R 2 + ( z - z ’ ) 2 ,  r’2 = R 2 + ( ~ + z ‘ ) 2 ,  and R2 = p2+p’2-2pp‘cos(0-0‘). 
For the 1/r Rankine part of (2.17) (the analysis for l/r’ is analogous), the 

circumferential integration (2.16) can be obtained analytically for any n in terms of 
second-kind Legendre functions of integral-minus-half order (Abramowitz & Stegun 
1964) : 

cos n(0- 0’) 2 
d(0-8’) = -&,-t(a,/b,), n = 0 ,1 ,2 ,  ... , (2.18) 

(PP‘P 
I 

where a, = p2+p’2+(z-z ’ )2  and b, = 2pp’. For the first two modes, n = 0, 1,  (2.18) 
can be evaluated directly in terms of complete elliptic integrals of the first and second 
kind (K and E respectively) : 

1 (2.19) 
R, = 2 (X/pp’)iK(X), 

R, = 2 (pp’)- t[ZX~K(X)--- tE(X)] ,J  

where X = 2b,/(a, + b,) and 2 = a,/b,. 
For the higher modes, evaluations using the forward recurrence relationship for 

Q,-t starting from (2.19) are unstable. Thus for n 2 2, we utilize instead the 
hypergeometric function representation of Q : 

(2.20) 

where r and F are respectively gamma and hypergeometric functions, and Z > 1 in 
(2.20). If the field point is not close to the ring source, the hypergeometric series 
representation, 

(2.21) 
r (m++n+i) r (m++n+a)  1 x r ( n  + 1 )  F =  

r (+++t)I‘(~n+~),=,  T ( m + n + l ) T ( m + i )  Z Z m ’  
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converges rapidly, and (2.20) can be evaluated accordingly. As the field point 
approaches the ring source, i.e. as 2+ 1 + , the logarithmic singularity can be 
excluded explicitly : 

2Y(m+1)- Y(an+$+m)- Y(&+a+m)-ln 

where Y is Euler’s psi function and (x), = I ‘ (x+m)/r(x) ;  and (2.22) is useful for 
2-1 4 1.  

The singularity of the n-mode ring source near the source ring is given by the 
asymptotic behaviour of &,-; as 2-t 1,  which can be inferred from (2.22) for m = 0: 

&,-;(Z) - -+ln 1-- + Y(l)-Y(n+t)+ln2,  2+ 1.  (2.23) ( a 
The corresponding behaviour for R, is 

(2.24) 

where c, are constants given by e, = 0, and 

c, = 2 1 + - + - +  ...+- ] fern> 1.  [ ;; 2n- 1 

It is of interest to note that the logarithmic singularity of R, is the same for all n. 
For computations, the two complementary expressions (2.21), (2.22) for the 
hypergeometric functions are first converted to economized Chebyshev polynomials 
for a specific equal-ripple error in the whole domain 2 > 1 (Luke 1975). 

The nth-mode Rankine kernel of the integral equation (2.14) can be obtained in a 
similar manner : 

where np and n, are respectively the components of the unit normal vector n in the 
p- and z-directions. The apparent Cauchy singularity in the last term of (2.25) 
vanishes identically when the source point approaches the interior of piecewise linear 
segments approximating the body boundary aB, and is otherwise finite for a body 
contour with continuous slope. 

The behaviour of (2.25) as the field point approaches the source ring is given by 

(2.26) EL - ?{-$In [ ( p - p ‘ ) ~  + (2-2/)21+ lnp + 3 ln 2 -d,}, 
an PP 
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where d, are constants given in terms of c, :do = 1, and 

d ,  = (n++)cn-(n-+)cn-l, n 2 1. (2.27) 

As before, the logarithmic singularity is identical for all n. 

W,, is simply the Fourier-series coefficient of W :  
For the non-singular part of the Green function (2.17)’ the nth-mode ring source, 

W,(p, z ; p’, 2’)  = Jr W ( p ,  z ; p’, z’ ; cos (8- el))  cos n(0 - 8’) d (8 -el), n 3 0. (2.28) 

Since W is periodic in (8-el), the convergence of W, with n is a function only of the 
smoothness of W. For computations, we truncate the number of modes at n = N ,  and 
the W, are given by discrete inverse Fourier transform : 

where E; = 2 for n = O,N, and €6 = 1 for n = 1,2,  ... , N -  1. Thus, only N +  1 
evaiuations of the Green function W are required to evaluate the N t  1 modes of the 
regular ring source W,, and the error is measured by the last term W,. In  practice, 
the convergence of W, with n may be slower than that of the potentials so that more 
evaluations, say N, > N ,  are used for the W,, n = 0 , 1 , .  .. , N .  Efficient algorithms for 
the evaluation of W are now available (e.g. Newman 1985) and are not detailed 
here. 

We now turn to the far-field behaviour of the general-order ring source. Bor 
R/h P 1, a useful expression for G is (John 1950) 

G = - 2niC0 cosh k(z  + h) cosh k(z’ + h) &(kR) 
m 

+4 C C , C ~ S K , ( Z + ~ ) C O S K ~ ( Z ’ + ~ ) ~ ( K , R ) ,  (2.30) 

where 4, & are the zeroth-order first-kind Hankel function and second-kind 
modified Bessel function, 

m=l 

v2 - k2 
k2 h- v 2  h+ V’ 

K k  -k V2 
~k h+ v2 h- v ’ 

c:, = c, = (2.31) 

and K,, m = 1 ,2 ,  ... ,are the real roots of the equation 

w2 = - ~ , g t a n ~ , h ,  ( m - $ ) %  6 K,h < rnx. (2.32) 

For finite depth, the second term in (2.30) is local (evanescent) modes which decay 
exponentially with radial distance, K ,  R, and the far-field asymptotic of G is given by 
the first term which represents outgoing waves : 

G = - 2xiC0 cosh k(z  + h) cosh k(z’ + h) &(kR) + 0(e-.lR). (2.33) 

The far-field asymptotic of the ring sources, upon using the addition theorem, is 

G, = -4x2iCOcoshk(z+h) cosh k(z’+h)Jn(&p’)H,(kp)+O(e-“ iR) .  (2.34) 
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We remark that, as depth increases, the rate of exponential decay of the local modes 
decreases according to  (2.32), and is only algebraic ( -  RP2)  for infinitely deep water 
(Newman 1967) : 

G = 2ziye”@+z’) &(vR) + 0(E2). (2.35) 

2.4. Evaluation of tke free-surface integral in (2.14) 
The most difficult and computationally expensive aspect of the solution of the 
integral equations (2.14) is the efficient and accurate evaluation of the free-surface 
integrals : 

(2.36) 

where a is the radius of the waterplane. The forcing terms, qn, are given in (2.15) in 
terms of first-order potentials, which may in turn be obtained through an integral 
equation of the form (2.14) (minus the free-surface integral). We use instead a source- 
distribution representation for the first-order potential : 

(2.37) 

where the ring-source strengths, un, satisfy the second-kind Fredholm integral 
equation : 

(2.38) 

Equation (2.37) is preferred over a mixed-distribution in evaluating (2.15) since it 
reduces by one the order of derivatives of the Green function required. Equation 
(2.38) is solved numerically following a standard procedure of discretizing i?B into 
linear segments, assuming a constant source strength over each panel, and selecting 
collocation points a t  the mid-points of the segments. The details are omitted. The 
derivatives of the potential in (2.15) are evaluated by successive differentiation of 
(2.37). 

The free-surface integral, (2.36), is evaluated over two intervals, (a, b)  and (b ,  GO),  

where the radius b is chosen so that the latter interval is evanescent-wave free: 

I n  the above, (n) represents terms that contain contributions from propagating waves 
only. I n  our computations, the near-field integral in (2.39) over the finite interval 
(a ,  b )  is computed by numerical quadrature (Romberg integration) with controlled 
tolerance. The last integral is made negligibly small by a suitable choice of the 
partition radius b according to (2.34). 

We evaluate the second integral, which is over an infinite domain, analytically. 
The integrand consists of products of three propagating waves and has a decay rate 
of p-i for p + 1 .  The local-wave-free first-order potential is given by 

&A = -447c2iC0 cosh k(x + h)  H,(kp)  dl‘ p’a,(x’) J,(kp’) cosh k(z’ + h) ,  (2.40) s,, 
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where the integral over i3B is simply the nth-mode Kochin function which we denote 
as 4. Substituting (2.40) into (2.15), we obtain 

I where 

8m.n  ('PI amanHm(b)R(kp)+Pman Jm(kp)Hn(lcp)+amPnHm(kp)Jn(kp), 

Tm,n(kP) amanHm(icp)Hn(icp)+PmanJ'm(lcp)H'n(lcp)+arnPnH',(kp)J',(lcp), 

(2.41) 

and primes denote derivatives with respect to argument. The coefficients a,, p,, are 
given by a, = -47c2iC0&, and P, = e,i"/cosh (kh). Using (2.34) for G,, we obtain an 
expression for the local-wave-free integrand, pd, G,, of the free-surface integral 
consisting of triple products of Bessel and Hankel functions multiplied by powers of 
kp. The final outer-field integral can be expressed in terms of definite integrals of the 
forms 

(2.42) 

where ( )* denotes complex conjugate. A method for the evaluation of these integrals 
is outlined in Appendix A. 

We remark that the exact evaluation of the local-wave-free integral above is 
critical to the efficacy of the present method. Substituting (2.40) into (2.151, 
combining with (2.34), and using the leading asymptotics of J, and H, for large 
arguments, it is easy to show that the free-surface integrand has the leading 
behaviour 

kpG; q, - [exp (i(2k + k,) p )  + exp (ik2p)] (k, p)-i for kp,  kg $- 1. 

Thus if the free-surface integral is simply truncated at  b (e.g. Loken 1986), the 
truncation error decreases only as b-i. For accurate results, the effort involved in 
numerical quadrature over a large domain becomes prohibitive. On the other hand, 
the convergence can be improved by evaluating the integral of the leading 
asymptotic term only from b to infinity in terms of Fresnel integrals (Eatock Taylor 
& Hung 1987). The neglected terms are then of O[p-e(k-'k,t+k,'k-6)], so that the 
convergence with b is still only algebraic, in contrast to the exponential decrease of 
error with b associated only with the evanescent modes in the present case. 



Second-order diffraction theory for an axisymmetric body 245 

3, Second-order exciting forces, moments and surface elevation 
The boundary-integral equation (2.14) for $6”; is solved using a discretization 

procedure similar to that for the first-order problem. The hydrodynamic pressure can 
be calculated from the first- and second-order potentials according to the Bernoulli 

where po denotes the fluid density. The second-order forces and moments, f y ) ( t ) , j  = 
1,2,  .. . ,6,  can be obtained by integrating the pressure on the wetted body surface : 

fW) = J=JsBP(2)njcW+JJse(,, @‘”-Pog4n,dx, (3.2) 

where (nl,  n2, n,) = n, (np, n5, n,) = r x n, and & and &(t)  are respectively the mean 
and time-varying portions of the instantaneous wetted body surface. 

For a harmonic incident wave, the second-order forces and moments contain 
double-frequency and steady components : 

fF) ( t )  = Re (Fj2) e-2iwt) + qz). (3.3) 

The double-frequency forces and moments can be further split into those due to 
contributions from the quadratic products of the first-order potential, Fi2), and those 
due to the second-order potential, FP);  i.e. Fja) = Fj:)+Fji). These are given, for wall- 
sided bodies, by 

n n  

Fj?i) = 2iwp0 J J qS2) nj dS, 
SB 

where Wo is the mean waterline. The mean second-order component is 

(3.5) 

For vertically axisymmetric bodies, the surface integrals can be reduced to line 
integrals along i3B by integrating in 9 and using orthogonality. Thus, for example, the 
horizontal force component, Pi:), can be written as 

If the body is not wall-sided, an extra factor, (1 -n:)-i, appears in the waterline 
terms. 

For the free-surface elevation, [ ( t ) ,  we expand the exact free-surface condition in 
a Taylor expansion about z = 0, and obtain the second-order elevation 
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As with the velocity potential, [ ( ” ( t )  can be decomposed into a time-independent 
term, q2)l and a double-frequency term of amplitude r f 2 ) ,  which in turn can be 
written as a sum of contributions from the first-order (@)) and second-order 
(yi2) = yg) + 7i2)) potentals : 

C(”( t )  = Re [(qi2) + ~ p ) )  ecZiwt 1 + q2)> 
and from (3.8) : 

(3.9) 

(3.10) 

(3.12) 

If only integrated second-order quantities such as forces are required, an 
alternative method (Molin 1979; Lighthill 1979), which does not require the solution 
for @) explicitly, is to  apply Green’s theorem with the use of an assisting radiation 
potential, $j, which satisfies the first-order boundary-value problem (2.4) a t  double- 
frequency, with the body boundary condition 

- a’kj = nj, on the body (4); j = 1,2, ... ,6 .  (3.13) 

Applying Green’s identity to @ and $j, and taking advantage of the boundary 
conditions they satisfy, we obtain 

an 

(3.14) 

so that the second-order forces are expressed in terms of first-order potentials only. 
For axisymmetric bodies, the free-surface integral in (3.14) has similar properties to 
that in (2.14) and the techniques of $2.4 are directly applicable. We remark that the 
computational effort involved in this indirect approach is not significantly different 
from the direct solution of $2, since in both cases an additional boundary-value 
problem a t  double-frequency ((2.14) or that for $) and an evaluation of similar free- 
surface integrals are involved. 

For a uniform bottom-extended vertical cylinder, the first-order potentials can be 
expressed in closed form, so that semianalytic expressions (not involving solutions of 
integral equations) for the second-order forces and moments can be derived using 
(3.14). These are summarized in Appendix B, and provide useful comparisons for the 
numerical results of $2 for this geometry. 

4. Numerical results and discussion 
For illustration we consider the diffraction of plane monochromatic waves by two 

axisymmetric geometries : (a )  a bottom-seated uniform vertical cylinder (radius a ,  
depth h = a )  for which semianalytic solutions for the forces are available (Appendix 
B) ; and (b )  a conical island or gravity platform (waterplane radius a ,  depth h = a ,  toe 
angle 60’) where second-order effects are expected to be particularly important. 

The integral equations (2.14) and (2.38) for the second- and first-order problems 
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va = 1.2 2.0 2.8 

exact 2.6282 1.6281 1.0529 

N, = 10 2.6250 1.6243 1.0481 
20 2.6276 1.6271 1.0515 
30 2.6281 1.6276 1.0520 

TABLE 1 .  Magnitude of the first-order horizontal diffraction force, IFg)l/pgu2A, on a uniform 
vertical cylinder ( u / h  = 1) for different frequencies, vu = w 2 a / g ,  as a function of the number of 
cosine-spaced segments, N,, on the body, compared to exact values. 

respectively are discretized and solved numerically following a standard procedure : 
(i) approximate the body contour, i3B, by Np straight line segments; (ii) assume 
constant values for the potential, #g;, or ring-source strength, gn, over each 
segment ; (iii) collocate the equations a t  the centre of each segment to obtain a system 
of linear algebraic equations for the segment unknowns, which is then solved. In 
calculating the influence coefficients, the singularities of the kernels in $2.3 are 
subtracted out and integrated analytically. The sources of numerical error are those 
associated with: (i) the truncation to a finite number, N ,  of Fourier modes in 8; (ii) the 
assumed constant variations of the unknowns over each segment; and (iii) the 
geometric approximation of the body contour by Np piecewise linear segments. 

For the present geometries, the body contours are described exactly by straight 
segments, and the numerical errors are controlled by proper choices of Np and N .  
Table 1 shows the errors in the modulus of the first-order horizontal diffraction force 
on the uniform cylinder as a function of Np (N, = 20 is used for the evaluation of the 
ring-source Green functions). To describe the more rapid variations near the free 
surface (especially for the second-order potential), cosine-spaced segments (with 
smaller lengths near the free surface) are used in all our calculations. The convergence 
with Np is approximately quadratic. Hereafter, Np = 20 segments are used for both 
the first- and second-order problems. 

To show the convergence with increasing numbers, n < N ,  of azimuthal Fourier 
modes, we tabulate the modal amplitudes of the first- and second-order potentials on 
the vertical cylinder a t  (p ,  z )  = (a,  0) (which are proportional to the run-up) in table 
2. For comparison, the amplitudes of the modes of the second-order incident and 
diffraction potentials are given separately. From partial wave decompositions of the 
incident waves, it is clear that the mode number beyond which the amplitudes 
attenuate rapidly increases with increasing frequency. This is seen for the larger 
w 2 a / g  = va as well as for the double-frequency potentials. It is of interest to note the 
large magnitudes and relatively slow decrease of Iqgbl compared to the double- 
frequency incident wave. In  all our calculations up to va w 0(3),  N = 9 and 14 are 
used respectively for the linear and second-order problems. 

A significant portion of the computational effort is in the evaluation of the free- 
surface integral in (2.14). For the free-surface forcing pressure terms, qn (2.15), is 
calculated from first-order source strengths via (2.37) and its first and second 
derivatives from direct differentiation of (2.37). The Rankine part and its derivatives 
are evaluated analytically from (2.18). With the use of constant-strength segments, 
the potential and its derivatives on the free surface from (2.37) are not accurate in 
a small neighbourhood (of the order of a segment length) near the intersection with 
the body (e.g. Korsmeyer 1988). In  practice, we obtain q$') (a ,  0) and @) (a,  0) from 
$(l) (a,  0) using free-surface and body boundary conditions respectively ; q$:) (a ,  0) 
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va = 1.2 2.0 2.8 

i71:1)l IrEJ lm I V Y  111g!&,1 171EI 171',"1 17121 17121 
n = 0 0.6339 0.3242 0.0966 0.5308 1.1600 0.0793 0.4704 0.4404 0.0024 

1 1.3028 0.8133 0.5301 1.1048 1.1375 0.0471 0.9477 2.3280 0.0400 
2 0.8704 0.7719 0.5810 1.1422 1.1666 0.1358 1.0170 1.9287 0.0191 
3 0.2018 0.3300 0.3201 0.6365 0.9640 0.1786 1.0089 1.6163 0.0265 
4 0.0339 1.4545 0.1215 0.1639 0.2415 0.1236 0.5051 1.2758 0.0473 
5 0.0047 1.4183 0.0355 0.0338 0.8139 0.0608 0.1431 0.6720 0.0405 
6 0.0005 0.5586 0.0085 0.0059 1.2414 0.0235 0.0341 0.3541 0.0246 
7 O.OOO1 0.1152 0.0017 O.OOO9 1.0073 0.0076 0.0070 1.0061 0.0118 
8 0 . 5 ~  0.0194 0.0003 0.0001 0.5904 0.0021 0.0013 1.0968 0.0048 
9 0.3 x 0.0029 0.5 x 0.1 x 0.2228 0.0005 0.0002 0.7860 0.0016 

10 0.2 x lo-' 0.0004 0.6 x 0.1 x 0.0490 0.0001 0.3 x 0.4555 0.0005 
11 0.1 x lo-* 0.0001 0 . 8 ~  0.1 x 0.0086 0.2 x 0 . 4 ~  0.2263 O.OOO1 
12 * 0.6 x 0.9 x lo-' 0.1 x lo-' 0.0014 0.4 x 0.5 x 0.0862 0.3 x 
13 * 0.6 x 1CP 0.1 x lo-' 0.9 x lo-' 0.0002 0.6 x 0.5 x lo-' 0.0208 0.8 x 

TABLE 2. Convergence of the linear and second-order surface elevation angular modal amplitudes 
(normalized by A and A2/a  respectively) on the circumference (p = a) of a uniform vertical cylinder 
(a/h = 1) for va = 1.2, 2.0 and 2.8. (* indicates values less than 10-lo). 

14 * 0.5 x 10-7 0.1 x 10-8 * 0.2 x 10-4 0.9 x 10-7 0.5 x 10-8 0.0036 0.2 x 10-5 

01 
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

Pla 

FIGURE 1. Comparison between analytic and computed results ( + ) for the amplitude of the first 
three modes of the second-order free-surface forcing pressure outside a uniform vertical cylinder 
( h  = a,  va = 2) as a function of radial distance. The curves are analytic results for: qo (-*-); q1 
(-); and q2 (---). 

from three-point differencing of $:) on the free surface and the body; and (a,  0) 
from applying Laplace's equation at the intersection point. The values for 
0 < ( r -a ) /a  4 1 are then obtained by three-point quadratic interpolations between 
values on the body and those on the free surface a small distance away. For cosine- 
spaced body segments, the typical relative errors in q, we compute are 0(0.1%). 
Figure 1 shows the comparisons between computed results and analytic solutions (cf. 
Appendix B) for the first three modes of the forcing pressure outside a uniform 
cylinder for va = 2. The slowly decaying and oscillatory behaviour of the profiles are 
quite evident. 



Second-order diffraction theory for an axisymmetric body 249 

vu = 1.2 2.0 2.8 

I P y  pfg IFp'I pfy p y  pfp1 
exact 2.263 1.239 2.694 1.439 4.229 2.429 

( b - ~ ) / h =  2 2.258 1.237 2.663 1.430 4.193 2.418 
3 2.262 1.238 2.691 1.437 4.227 2.429 
4 2.263 1.238 2.694 1.439 4.231 2.431 

TABLE 3. Magnitude of the second-order potential horizontal force and overturning moment 
(normalized by p g d 2  and pgu2A2 respectively) on a uniform vertical cylinder, u / h  = 1 .  The results 
are for different partition radii b for the free-surface integral evaluation compared to semianalytic 
solutions (Appendix B). 

The free-surface integral in (2.14) is calculated using the method of $2.4. To 
estimate the convergence of the integral with the partition radius b, we consider a 
typical local mode in the second term of (2.30). Using the addition theorem for 

4: W 

$ ( K m  R )  = en L ( K m  P') Kz ( K m  P )  cosn (6 - 6') 7 (4.1) 
n-o 

it is clear that for p' on the body, the decay of the local modes with p is exponential 
with a rate given by or in fact p / h  according to (2.32). In general, for a given 
tolerance, we select a fixed ( b - a ) / h  to control the error associated with neglected 
evanescent waves in the outer integral. Table 3 shows typical convergence of results 
with (b - a ) / h  for the second-order potential horizontal force and overturning 
moment (with respect to the bottom) on a uniform vertical cylinder ( a / h  = 1). It is 
seen that a partition radius of b - a - 3h is adequate for three significant decimals of 
accuracy and is used in later computations. The accuracy with relatively small 
numerical integration requirements again underscores the efficacy of the method of 
$2.4 compared to methods that have only algebraic convergence. 

We now turn to the results for the two geometries. Table 4 shows the first- and 
second-order forces and moments on the uniform circular cylinder (computed from 
pressure integration on the body) compared to semianalytic results (Appendix B). 
For the evaluation of the second-order mean (Fp)  and M c ) )  and that part of the 
double-frequency (FiT and M:"::, forces and moments given by the first-order 
potential, the gradients of the linear potential on the body are required and are 
calculated by three-point centred differences of collocation point values. The errors 
in table 4 increase somewhat with frequency but are less than l?h for all the 
quantities shown. In all cases for the force, the contribution of the second-order 
potential is larger than that of quadratic products of first-order quantities. However, 
these two effects are generally out of phase so that the net second-order excitations 
are relatively small compared with the linear quantities but increase with increasing 
wave frequency. Thus for moderately steep waves, say kA - 0.2, the double- 
frequency second-order force amplitude is only about 4-16% for va = 1.2-2.8. The 
situation for the overturning moment is similar but with somewhat smaller ratios of 
M$j' toMk2,). This is related to the relative centres of pressure of the different pressure 
components (see figures 3 and 4). 

The magnitudes of the first- and second-order force coefficients are plotted in figure 
2 as a function of incident frequency. The comparisons with semianalytic results are 
uniformly good except for small discrepancies in a neighbourhood of va w 2.4 which 
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va = 1.2 2.0 2.8 

FL” 0.708, -2.531 -0.264, -1.606 -0.746, -0.743 
0.708, -2.531 -0.264, -1.606 -0.745, -0.742 

pp’ 0.826 
0.826 

0.711 
0.711 

0.656 
0.655 

E”2’ E l  - 1.648, -0.308 - 1.094, 0.849 0.892, 1.341 
- 1.648, -0.305 - 1.076, 0.846 0.887, 1.345 

j ” 2 ’  2 2  2.259, -0.136 1.972, - 1.835 -2.209, -3.606 
2.258, -0.135 1.973, - 1.830 -2.208, -3.604 

E”2’ 0.611, -0.444 0.878, -0.986 -1.317, -2.265 

M f ’  0.401, -1.431 -0.165, -1.004 -0.511, -0.509 
0.400, -1.431 -0.165, -1.003 -0.510, -0.509 

q’ 0.870 
0.870 

0.822 
0.823 

0.777 
0.778 

Mr; - 1.485, -0.385 - 1.063, 0.801 0.835, 1.268 
- 1.485, -0.382 - 1.044, 0.797 0.829, 1.272 

mfz) 1.201, -0.303 1.041, -0.993 -1.360, -2.012 
B 1.200, -0.302 1.042, -0.990 -1.360, -2.013 

Mk2’ -0.284, -0.688 -0.022, -0.192 -0.525, -0.744 

TABLE 4. Real and imaginary parts (real, imag) of the first- and second-order horizontal force and 
overturning moment (with respect to the bottom) of a uniform vertical cylinder (a /h  = 1) obtained 
by direct pressure integration on the body. For comparison, semianalytic solutions obtained using 
assisting potentials (Appendix B) are given on the first rows. (The quantities F“), M E ) ,  F(2)  and 
Aft2) are normalized by pga2A, pgu3A, pguA2 and pga2A2 respectively.) 

corresponds to the first irregular frequency of the integral equation (2.38). (The 
frequency is given by the homogeneous interior Dirichlet solution at  the first zero of 
J,(ka) a t  ka x 2.405 or va !z 2.366. The effects of the irregular frequencies, v ,  
associated with (2.14) which are one-fourth those of (2.38) are much weaker.) The 
force components due to the second-order potential are major portions of the total 
second-order quantities and their magnitudes relative to the other second-order 
contributions increase with increasing frequency. Thus, in no situation is it valid to 
ignore FF) in favour of quadratic contributions of the first-order potential. This 
invalidates many recent engineering estimates of second-order wave effects on 
structures (e.g. Herfjord & Nielsen 1986; Petrauskas & Liu 1987) wherein the second- 
order potentals were ignored. Note that both Fiz) and MF) blow up as va = vh + 0, 
and the second-order result becomes invalid. This is related to failure of Stokes’ 
expansion (see (2.3))-as kh < 1 for fixed ICA. As pointed out earlier, FiZ) and Piz) (as 
well as the moments) are generally out of phase, so that the net double-frequency 
excitation amplitude is usually smaller than that of F r )  and important only for steep 
incident waves. 

Unlike earlier work such as Molin (1979) and Eatock Taylor & Hung (1987), we 
obtain the second-order potential explicitly so that useful local second-order 
quantities such as pressure distribution, velocities and wave run-up are also 
available. Figures 3 ( a )  and 3 ( b )  show the amplitudes of the linear and components 
of the second-order pressure distributions on the cylinder on the lee (8 = 0) and 
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0.5 1 .o 1.5 2.0 2.5 3.0 
va 

+-4- 

0.5 1 .o 1.5 2.0 2.5 3.0 
va 

FIGURE 2. Amplitudes of the linear and components of second-order wave excitations on a uniform 
vertical cylinder (a  = h) as a function of incident frequency, va. The curves are for semianalytic 
solutions for: p(’)( (---- ); F(2) (---); Ippl (-.-); Ipi”’l (- ) ; and +Fiz)I (---). 
Results from pressure integration are denoted by symbols (0). (a)  Horizontal force, F,; and ( b )  
pitch moment with respect to the bottom, 4. 

weather (6 = R )  sides respectively for va = 2. Analytic results, where available (from 
(B l)), are also shown. The pressures pi2) and j9) which are due to quadratic products 
of the first-order potential, as well as the pressure due to $f2) attenuate with depth 
with a rate of - 2k, whereas the pressure associated with the second-order double- 
frequency free waves (&) has a decay rate given by k, - 4k. On the other hand, the 
portion of the nonlinear potential second-order pressure, pi2) which is forced by the 
inhomogenous surface term (2.6), has a much slower attenuation with depth dictated 
by (2.6). This is especially evident on the weather side. The phenomenon can be seen 
in general from the far-field behaviour of &, (2 .10 ) ,  where the depth-dependence of 
the potential varies from being a constant on the weather side (0 = R) to cosh 
2k(z+h)  on the lee side. 

For longer waves, the situation is even more interesting, where the pressure may 
not decrease (monotonically) with depth and the minimum pi2) may not in general 
be at the bottom. This is shown in figure 4 for the case of va = 1.2, for different 
circumferential positions along the cylinder. Along the leeward (0 = 0) edge, the 
second-order potential pressure first decreases with depth, reaching a minimum a t  
around middraught and then begins to increase towards the bottom. At the 
waveward quarter (0 = 31~/4) the pressure has a minimum close to the surface and 
then increases monotonically with depth. 

9 FLM 200 
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2.0 , t 

- 1.0 
0 0.2 0.4 0.6 0.8 1 .o 

- z / h  

- 2.0 I 1 I 

0 0.2 0.4 0.6 0.8 1 .o 
- z / h  

FIGURE 3. Modulus of the linear and components of second-order hydrodynamic pressure on the 
side of a uniform vertical cylinder (h = a, va = 2) on (a) the lee side (0 = 0) ;  and (b) the weather 
side (0 = x ) .  The curves are computed results for: lp(l)l (---- ) ; P  *2) ( 1; IP, I ( -.- ); and 
IP:”’l (- ). Analytic results obtained from the linear potential are denoted by symbols (0). 

- z lh  

FIGURE 4. Modulus of the (double-frequency) hydrodynamic pressure due to the second-order 
potential on the side of a uniform vertical cylinder (h = a, va = 1.2) at  different angular positions: 
0 = 0 (---) ; 0 = (-.-) ; 6’ = (---) ; 6’ = (----) ; and 0 = x (- 1. 
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2.0 , I 

-1.0 I L I 1 t 

0 0.2 0.4 0.6 0.8 1 .o 
- z / h  

4.0 

-2.01 I I 1 
0 0.2- 0.4 0.6 0.8 1 .o 

- z / h  

FIQURE 5. ModuIus of the linear and components of second-order hydrodynamic pressure on the side 
of a uniform vertical cylinder (h = 4a, vu = 2) on (a )  the lee side (B  = 0) ; and ( b )  the weather side 
(6 = n). The curves are computed results for: lp(l)l (---- ) ; p (2) ( ) ; Ipf)'l (--) ; and IpL*)l 
(- 1. 

For deeper water, the total hydrodynamic pressure may be dominated by that due 
to the second-order potential. Figure 5 shows the pressure distributions on a uniform 
cylinder of depth h = 4a a t  va = 2. As expected, all pressure components given by 
q5(l) ($i2) or q5H) attenuate exponentially while pi2) (which is proportional to q5p a t  
deeper depths) has only an algebraic-like decay with depth. This has a very 
important consequence for the forces on deep-draught bodies. Figure 6 shows the 
horizontal force components on a uniform cylinder of varying depth h/a  for va = 2. 
With the attenuation of linear-potential pressures with depth, the quantities FL') and 
FLY (as well as forces due to q5i2) and q5H) reach constant values rapidly as h/a  
increases. The force due to the second-order potential, $p, however, continues to 
increase in magnitude and converges to a constant asymptotic very slowly. For 
information, the magnitudes of the first-and second-order components of the free- 
surface elevation on the cylinder (at 0 = R )  are aIso plotted, which show that the 
increase in FZi is not due to the magnitude of the potential on the surface. For 
truncated cylindrical bodies, this phenomenon gives rise to unexpected second-order 
vertical forces even when vH > 0(1), where H i s  the draught of the body (Kim & Yue 
1988). 

We next show the first- and second-order run-up on the uniform cylinder as a 

9-2 
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FIGURE 6. Amplitudes of the linear and components of second-order horizontal force and run-up 
(at 8 = n) for uniform vertical cylinders (ua = 2) as a function of the depth, h. Connected symbols 
are for computed values of: IP(”l/p0ga2A (A) ; FF‘,2’l/pogaA2 (0);  l~!f’+p‘82’I/pogaA2 (0) ; Iv”’I/A 
(+)  ; and l~F‘ ,~) la /A~ ( x ). Analytic solutions are represented by the curves (--.-). 

6.0 I I 

-2.0 I , I I 

0 0.2 0.4 0.6 0.8 1 .o 
e / x  

FIGURE 7.  Amplitudes of the linear and components of second-order free-surface elevations (run- 
up) on a uniform vertical cylinder (h  = a,  ua = 2) as a function of the azimuthal angle, 0. The curves 
are for computed values for: 1y(l)1 (----); q2) (---); 1y\*)1 (-a-); 1yiz)1 (-); and 
1y\2’+7]F‘,2’1 (--- ). Analytic results obtained from the linear potential are denoted by symbols 
(0). 

function of the azimuthal angle 8 for va = 2 (figure 7) .  The amplitudes of the run-up 
components generally increase from the lee (8 = 0’) to weather side, whereas qiz) has 
another maximum a t  the lee quarter. The relative magnitudes and phases between 
111“) and qg)  depend on 8, and in general the total double-frequency run-up can be 
several times larger than the second-order mean set-up (down), which itself has a 
trend similar to qi2)’, with a maximum set-up on the weather side and set-down along 



Second-order diffraction theory for an  axisymmetric body 255 

01 I I 1 

1.2 1.6 2.0 2.4 2.8 

Vl? 

FIGURE 8. Maximum amplitudes (over 0)  and the positions of the maxima (Omax) of the linear and 
components of second-order wave run-up on a uniform vertical cylinder ( h  = a)  as a function of 
incident frequency, va. The symbols are for: 1+1)1 (A) ; +j@) ( x ) ; ls:2)l ( + ) ; IrjL2)I (n) ; and l7i2)+~p) 
I(0). 

the leeward portion of the cylinder. The general behaviour of the various run-up 
components is sensitive to the incident wave frequency. In  figure 8, we plot the 
maximum amplitude, over 8, and the position of the maximum (Omax) of these 
components as a function of va. Except for the lower frequency, the maximum 
I T , I ? ) ~  is greater than 19i2)l by almost a constant factor, while both quantities as well as 
the maximum ( f f 2 ) 1  (which are all for f f 2 )  > 0) tend to increase with frequency. The 
maximum net double-frequency amplitude IT$) + 7!j2)I is less sensitive to frequency, as 
is the case for the linear run-up, lr(l)l. The dependence on water depth has been 
plotted in figure 6 for va = 2 .  In  general, the amplitudes, including 1~,1(22)1, are not 
sensitive to increasing depth beyond vh > - 2 .  On the other hand qi2)increases 
rapidly in shallow water as a consequence of Stokes’ expansion for long waves, as 
pointed out earlier. 

We next turn to results for a bottom-seated truncated vertical cone (waterplane 
radius a,  water depth h = a,  and a toe angle of 60’). Such a geometry has been 
proposed for gravity platforms in the Arctic (e.g. Sarpkaya & Isaacson 1981), or may 
be considered as model for a circular island. In  this case, the non-vertical body wall 
is expected to lead to more important second-order effects. 

Figure 9 shows the magnitude of the components of horizontal and vertical forces 
and overturning moment (with respect to the bottom centre) on such a body. As a 
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FIQURE 9. Amplitudes of the linear and components of second-order wave excitations on a 
truncated vertical cone ( h  = a, toe angle 60') as a function of incident frequency, va. The curves 
are for results computed from pressure integration for: IF")I (---- ) ; P  ( --- 1; IF!"I (-*-I; 
IWI (--- ) ;  and (Fiz)+FizlI (---). The symbols (A) denote results calculated from (3.14). ( a )  
Horizontal force, F,; ( b )  vertical force, F, ;  and ( c )  pitch moment with respect to the bottom, A(,. 
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FIGURE 10. Amplitudes of the linear and components of second-order free-surface elevations (run- 
up) on a truncated vertical cone ( h  = a, toe angle 60°, va = 2) as a function of the azimuthal angle, 
0. The curves are for computed values for: (7(l)1 (---- ) ; 7 **) ( --- ); 17!”’1 (-----); I7T’I (-1 ; 
and 17i2) + 7i2)l (--- ). Note that a different scale is used for plotting second-order amplitudes. 

check, the results for lF$?J and IF$)/ obtained independently using assisting 
potentials, (3.14), are also plotted. These second-order potential forces dominate all 
other second-order contributions throughout the frequency range. Although the 
relative phases between Fi2) and Fi2) still cause the amplitudes to partially cancel, the 
net second-order double-frequency forces on the cone may be an appreciable part of 
the total excitation, especially for higher frequencies. For example, for wave slope of 
kA = 0.2, IF22 + FiT:zz)l a t  va M 2.4 and IFg) +FL?J a t  va x 2.8 are respectively 60 YO and 
180% of the corresponding linear amplitudes a t  those frequencies. For the 
overturning moment, Mi2) is comparable in magnitude with Mi2) and they both 
oscillate with frequency. In  this case, however, the components are roughly in phase 
and the net double-frequency moment is comparable with the linear moment only for 
steep waves (say kA > - 0.25 a t  vu - 2.5). 

The run-up along the circumference of the cone is plotted in figure 10 for the first- 
and second-order double-frequency and steady components for va = 2. The double- 
frequency run-up is much greater than that for the vertical cylinder and shows large 
variations along the waterline. The net amplitude is given essentially by the second- 
order potential component and has a maximum at the sides of the cone where it may 
be comparable with the first-order run-up there for kA > - 0.13. Again the detailed 
features depend very much on the specific incident frequency, and the results are 
summarized in figure 11 where the maxima, over 8, of the amplitudes of the various 
run-up components are plotted as a function of va together with the positions 
(Omax) of the respective maxima. Comparing to figure 8 for the vertical cylinder, 
we observe that : the magnitudes of the second-order components are much larger ; 
JqI2)Jmax is now quite small compared with Iqi2)lmax; the maximum total double- 
frequency run-up increases more rapidly with frequency ; the locations of the 
maxima are more sensitive to frequency; and the interesting fact that the maxima 
of lq2)1 are now all for mean set-down (i.e. qz) < 0). 
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FIGURE 11. Maximum amplitudes (over 8) and the positions of the maxima (19,,,8x) of the linear and 
components of second-order wave run-up on a truncated vertical cone (h  = a,  toe angle 60") as a 
function of incident frequency, va. The symbols are for: Iq(')l (A) ; f z )  ( x ) ; 1vl')l ( + ) ; lqiz)l (0) ; and 
1vi2)+viz11 (0). Note that a different scale is used for plotting second-order amplitudes. 

We have also calculated the components of the pressure on the cone. With the 
exception of a sharper rise o f p r )  towards the free surface, the qualitative features are 
similar to those for the vertical cylinder and are not shown. 

5. Conclusion 
Using a general order ring-source boundary-integral equation method, the second- 

order diffraction problem for an axisymmetric body in the presence of plane 
monochromatic incident waves is solved for the nonlinear sum-frequency potential. 
An important part of the solution is the efficient and accurate calculation of the 
forcing term which requires the evaluation of an oscillatory and slowly decaying 
integral on the free surface. An approach that treats the entire local-wave-free outer 
region analytically is developed and shown to be efficacious. Although the second- 
order potential is solved explicitly, the present method is comparable in 
computational effort with existing approaches (Molin 1979 ; Lighthill 1979) which 
utilize fictitious assisting potentials to obtain global second-order quantities. An 
important benefit is that complete second-order local quantities such as pressure 
distributions and surface elevations are now available. 

For illustration, the second-order diffraction problem for a uniform vertical 
cylinder and a truncated vertical cone are studied in some detail. In  addition to 



Second-order difraction theory for an axisymmetric body 259 

convergence tests with respect to truncation and discretizations, comparisons of the 
second-order forces and moments for both geometries with independent results 
obtained using assisting potentials confirm the validity and accuracy of the present 
calculations. 

From our numerical examples, several important second-order diffraction features 
are observed : 

(i) The relative importance of second-order effects generally increases with 
frequency, w2a/g,  and with the draught of the body, w 2 H / g .  

(ii) The second-order potential cannot be neglected in favour of quadratic 
contributions of the linear potential. Double-frequency results obtained without 
accounting for this potential will probably be inadequate in all but very specialized 
cases. 

(iii) The second-order double-frequency diffraction potential can penetrate much 
deeper than even the linear (incident-frequency) potentials. The pressure or velocities 
associated with this nonlinear potential may not in general be negligible even for 
Iw2z/gI > O(1).  In  particular, the vertical force otherwise absent on a deep truncated 
cylinder can be non-trivial owing to this potential. 

(iv) When the body sidewalls are outward sloping towards the bottom, such as in 
the case of a vertical cone, second-order effects such as run-up are amplified and may 
indeed be greater than first-order quantities for moderately steep incident waves. 

The present method can be generalized to the case where the incident waves 
contain multiple frequency components (resulting in second-order potentials at the 
sums and differences of the component frequencies) as well as the radiation 
problem - these are considered in Part 2. For general three-dimensional bodies, (2.11) 
requires the two-dimensional free-surface integral : 

where q is given by (2.6) and &) in (2.6) can be given, say, by a source distribution 
on the body : 

(5.2) @’(x) = ss,, fT(x‘) G(x; x’) dx‘. 

Using the far-field asymptotic of G, (2.33), and the addition theorem for Hankel 
functions, we have after a simple expansion : 

(5.3) 
g,,(x’) cos n6 + gs,(x’) sin n6 { g)} - n=O Hn(kp) { L,, cosn6+ L,, sinn6 

where g c n ,  gsn are known functions of the point x‘ on the body, and Lcn, L,, are the 
Kochin functions : 

Using (5.2)-(5.4) in (5.1) in the local-wave-free far field, the @-integral can be 
integrated explicitly, and (5.1) reduces to sums of one-dimensional integrals over the 
radial coordinate p of the forms (2.42), and the method of Appendix A is directly 
applicable. 
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Appendix A. Evaluation of the triple-Henkel integrals (2.42) 
We consider, as an example, the integral 

00 

Gmn(x0) = ~ ~ ~ x ~ ( x ) H m ( x ) ~ ( a x ) d x ,  (A 1) 

where xo = kb, and a = k2/k. To evaluate (A l ) ,  we expand each Hankel function in 
polynomials of xo/x, whose coefficients can be determined from an equivalent 
Chebyshev polynomial expansion for a specified equal-ripple error (Luke 1975) : 

i = 1,2, 

where yn = (+++)IT. The integral (A 1) can then be written as a triple sum: 

dx, (A 31 
i l k  

where 

Using a change of variable, y = (2  + a)x, we obtain 

It,, = l$mn C C C a-’ y;+j+’ C,, C,, c n k  U(i  +j + k), (A 4) 
t 5 k  

where yo = (2+or)xO,l$,, = (2+a)-+4,,, and U is defined to be the definite integral 

Upon integration by parts in (A 5 ) ,  the following recurrence formula for U(n)  can be 
derived : 

The starting value U(0)  is given from Fresnel integrals (Abramowitz & Stegun 
1964) : 

The recurrence formula (A 6) is stable in the forward direction. Since U(n)  decreases 
rapidly with n,  to avoid underflow cancellation in computations, it is convenient 
to define O(n) = T(n++)U(n) ,  which has the neutrally stable forward recurrence 
formula 

with the starting value O(0) = ntU(0). The use of 0 in (A 4) is numerically more 
robust and preferred. In practice, the summations in ( A 4 )  are truncated for a 
prescribed equal-ripple tolerance according to the magnitudes of the original 

U(O) = (2x13 [t(1+ i) - c2(yO) -i&(y0)]. (A 7 )  

O(n) = T(n-t)eiYoyji-n+iO(n-l), n = 1,2,  ..., (A 8) 
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l m n  Eq. (A41 Romberg quadrature 

1 2 3 (0.001886, 0.003742) (0.001 886, 0.003742) 
5 3 6 (-0.006758,0.002120) (-0.OO6758,0.002120) 
9 9 12 (-0.01 1812, -0.034072) (-0.011812, -0.034072) 

1 1  11 14 (0.109891, 0.000471) (0.109891, 0.000471) 
14 9 17 (-0.361 132,0.022987) (-0.361 132,0.022987) 
12 12 15 (-0.040432, -0.246567) (-0.040433, -0.246565) 
13 13 17 (-0.240835,0.712153) (-0.240853,0.712166) 

TABLE 5. Numerical verification of (A 4) for evaluating the integral of triple products of Hankel 
functions, (A 1) .  The difference &n(xz)-I~mn(xl) obtained from two evaluations of (A 4) and from 
direct Romberg quadrature (tolerance lo-') over the interval ( x , , x 2 )  are compared for x1 = 10, 
z2 = 11 ,  and a = 4. 

Chebyshev coefficients. The other integrals in (2.42) are evaluated in a similar 
manner. 

To give an indication of the accuracy of the present method, we calculate (A 1) for 
two partition points xl, x2 according to (A 4), and compare their difference to that 
computed by numerical Romberg quadrature over ( x ~ ,  x2). The results for a range of 
orders 1,m,n are given in table 5. The accuracy is satisfactory but diminishes 
somewhat with increasing orders due to round-off cancellations associated with the 
slow convergence of (A 4). 

Appendix B: Expressions for the second-order forces and moments on a 
bottom-extended vertical cylinder 

The solution for the secmd-order horizontal force on a bottom-seated vertical 
cylinder has been studied by Molin & Marion (1986) and Eatock Taylor & Hung 
(1987). We extend the results to the second-order overturning moment also. The 
first-order total potential is 

and the first-order forces and moments are given in closed form. 
From (3.4) and (3.6), the component of the second-order mean and double- 

frequency horizontal force and overturning moment (about the centre of the cylinder 
bottom) due to quadratic products of the first-order potential can be evaluated: 

9 (B2)  
-- 2kh ~ n ( n + l ) (  2kh )] 2i * x I 'sinh 2kh 

FFi -- 
pogaA2 ~ ( k a ) '  n-oH',(ka)H'n+l(ka) sinh2kh (ka)2 

(-1Y 2kh n (n+l )+l  Z(kh)-i , (B3)  
4i * c - -- Mk"z 

po gahA2 n(ka)' n-o Hn(ka) q,, (ka) { + sinh 2kh [ ((ka)2 ) ]} 
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where 

and the Wronskian 

is used. 
From (3.5), the second-order potential forces and moments ( F i 2 ) )  have components 

that depend on the second-order incident wave $i2) (Fg) and diffracted wave $g) 
(F!j%) respectively. Expanding the incident wave potential (2.3b) into partial waves, 
the Froude-Krylov components can be readily calculated : 

M.-H.  Kim and D .  K.  P. Yue 

Z(kh) = a +  (2khsinh2kh-cosh2kh+ 1)/8(kh),, 

J,(ka)Hk(Ea) -J6(ka)H,(ka) = 2i/7cka 

FfiI - - 3inJ1(2ka) 
pogaA2 2sinh2kh ’ 
-- 

(B 7) 4kh 1 . M(2) - 3i7c tanh kh sinh 2kh cosh 2kh - 1 
pogahA Y2I = 2 sinh4 kh J1W[ 

- 

The diffraction component can be obtained via (3.14) in terms of assisting radiation 
potentials for horizontal translation (+1) and pitch rotation (with respect to the 
bottom) ( + 6 ) .  These potentials are given by 

The coefficients A,,  A5 are obtained by integrating the vertical eigenfunctions with 1 
and ( z  + h) respectively in z : 

4 sinh k,, h 
-41, = 2k2,,, h + sinh 2k,, h’ 

4(k,, h sinh k,, h - cosh k,, h + 1 )  
k2,(2k,, h+sinh 2k,, h) A 5 m  = 

m = 0 , 1 , 2  )...) (B 9) 

where k,, = k,, k,, 5 ilcBm, m = 1,2, ... , and K , ~  are the real roots of (2.32) with w 
replaced by 213. 

From (3.14), the diffraction components are given by 

Using (B 8), the first term can be integrated to yield 

Fk!H /p0guA2] - - 3nik2 tanh khJi(2ka) 
sinh4 kh 

1 sinh (2k + k2,) h sinh (2k - k,,) h 
2k - k,, 

17 + 
2 2 k + k , ,  =-[ where 

(B 11) 

m = 0 , 1 , 2  ,.... ( B l 2 )  

The second term of (B 10) represents the contribution due to  $p and is simplified 
somewhat after integration in 8: 
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where 
00 

n-0 
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and Y,(kp) = J,(kp) - (J’,,(lca)/H,(ka))H,(k~). The free-surface integral in (B 13) can 
be elevated as described in $2.4. 
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